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We show that, subject to a certain condition, the number of zeros of a spline
function is bounded by the number of strong sign changes in its sequence of
B-spline coefficients. By writing a general spline function as a sum of functions
which satisfy the given condition, we can deduce known bounds on zeros and sign
changes and can show that the number of zeros of any spline function is bounded
by the number of weak sign changes in its sequence of B-spline coefficients, where
the zero count is stronger than that previously used. T 1994 Academic Press, Inc.

1. BACKGROUND

The relationship between a spline function and the sequence of its
B-spline coefficients has been much studied [1, 7, Chap. 4] and it seems
surprising that there is anything simple or useful left to say in this regard.
However, we give below a simple example for which the known results do
not imply the number of zeros which seems intuitively clear, and examples
such as this impelled us to prove stronger results on the zeros and sign
changes of spline functions.

First we give some definitions. For a real sequence a = (a,)f, S~ (a) and
S*(a) denote respectively the minimum and maximum number of sign
changes in a gained by assigning signs to the zero entries. For a real-valued
function f on an interval /, we let V(f) denote the number of its changes
of sign, ie.,

V(f) :=sup S (f(to)s ... S(2k))s

where the supremum is taken over all sequences t, < --- <, in I, for all k.

Now take integers m, n >0 and a non-decreasing sequence t=(z,)7*"*"
with #,<t;, 41, i=0,..,m For i=0, .., m, let N, denote the B-spline of
degree n with knots ¢,, ..., ¢, ,,,. (The normalisation is immaterial.) For

constants 4, ..., a, we let

f(x)= i a,-N,-(x), t0<x<tm+n+l’ a=(ai):)n' (1)
0
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We denote by Z(f) the number of its zeros, counted with multiplicity as
in [7, Chap. 4]. (This depends on t and is described in Section 3 where it
is compared to our stronger zero count.) It is known [7, Chap. 4] that

V/f)<S (a), (2)
Z(f)sm. (3)

A stronger form of (2) is given in [27, while (3) can be strengthened to
Z(f)< S (a), 4)

see [4, Theorem 1].
Now take 0<iy<i; < --- <i,<m and let

f= Z b,-N.',-
ji=0

Then de Boor {27 and de Boor and DeVore {3] have shown the following,
which is a stronger version of the Schoenberg—Whitney theorem [6].

If f vanishes at points o<y, < --- <y, with

<Y<t Jj=0,..,r (5)

then f=0. (Here, as usual, coincidence of points y, denotes vanishing of
derivatives.)

We now give the promised example. Let n=2, m =6, t=(t;) be strictly
increasing, and as in (1) define

J(x)=aoNo(x)+ a; Ny(x) + as Ny(x) + ag No(x), fy<x<ly,

where a;>0, a,>0, a;<0, ag<0. Here (2) gives V(f)<1, (3) gives
Z(f)<6, (4) gives Z(f) <5, and (5) gives Z(f) < 3. None of these results
tell us that Z(f)< 1. In the next section we prove the following result
which, as we shall see, implies (3), (4), and (5) and, in particular, gives
Z(f)< 1 in the above example.

2. THE MAIN RESULT

THEOREM 1. Suppose that f is given by (1) and that for every x in
(2o Loy vns 1)y there is some i with a;#0 and t,<x<t,,, .. Then

Z(f)< S (a) (6)
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Before proving this, we clarify the meaning of Z(f) in this case. By the
local linear independence of B-splines, the condition of Theorem ! implies
that f cannot vanish on any non-trivial interval in (7g, 7, ., () Now
suppose that x is a knot of multiplicity s= 1 in (Z5, f,, ;o4 1), SO that x =1,
where t;,_,<t;=---=¢,,, | <t;,,. Then t;,<x<t,,,,, can hold only
for i=j+s—n—1,..,j— 1. The condition of the theorem then shows that
s< n and thus there are no knots of multiplicity # + 1 and f'is continuous.
If f*x)=0, k=0,..,n— s, then applying (5) to the function

I e a_yaN;, shows that a,=0 for i=j+s—n~1,.,j—1, which
contradicts the condition of Theorem 1. Thus at a knot of multiplicity s, f
can have a zero of multiplicity at most » —s. To sum up, any zero of f is
a point y, where for some /> 1, f“%y)=0,j=0, .., /-1, f is continuous
at y and f(y)#0. The zero count Z(f) is in this case gained by simply
adding the number of zeros y with corresponding multiplicities /. This
avoids the more general zero count of [7] which has to deal with interval
zeros and discontinuities, and is discussed in Section 3.

The proof of Theorem 1 depends on the following, which is Lemma 3 of
{4]. The general approach was initiated in [5].

LEMMA. Suppose that f is given by (1) and take t with t, <t <t;, , ., for
some j with a,#0. Let 1= (1,)5*"*? denote the non-decreasing sequence

gained by including © in t. For i=0,..,m+ 1, we assume 1<, ,,, and let
N, denote the B-spline of degree n with knots t;, ... T, .. If

then
ST@)< S*(a)
Proof of Theorem 1. Let f=f,+ --- +f,, where for j=1,..,r,

fi=2Y aN, a;#0  for I, <i<m

i=y
and
Lozm+2, j=1,.,r—1

Let a=1,, =1, 4,41 Since a,# 0 implies i <m, or i =/,, the assump-
tion of Theorem 1 implies ¢, <a<t;,,,,, for some i<m, and hence
A<ty ny1=P. Letting k=1,—m,—1, we construct a new sequence
t=(f)r*"***! by inserting k distinct points into t, where these points are
in (a, f) and distinct from the elements of t. Let N, denote the B-spline with
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knots 7y, ., fry ..y, and let f=37**3,N, Then f,=X,"""aN, with

Ay 8y 41 >0, and fr= ZZ‘”" a,N,, with a,a, > 0. By the lemma,
STy e Ay ) <SSy, nay)=S"(ay, ., a,,)
and similarly
SHays s oy 1) S 7 (Apyy oy )
Since m, +k=1,—1,
S lgys oo oy 1 k) S S (@15 wor Ay )

Continuing in this way we can construct a non-decreasing sequence
t=({)7+r"+*'+ some I>1, with corresponding B-splines N, i=
0,...,m+1 so that f=%7""G,N, and

S+(dOs jaie] aﬁer/)SSi (aO, ooy am)'

The result now follows from (4). 1§

If a spline function f as in (2) does not satisfy the condition of
Theorem 1, then we can simply split it into pieces which do satisfy the
condition, as follows. It is easily seen that for some p =1 we can choose
points

thSby <o, €y <o, € - Kb, <, Sy (7)

so that for i=1, .., p, f| (b, ¢;) satisfies the condition of Theorem 1, and f
vanishes outside |J {[b;, ¢;J:i=1,..,p}. Thus we can deduce zero and
sign change properties of f by applying the theorem to f| (b, ¢;), i=
1,.., p. As an example let n=2, m=9, t=(¢,)}> be strictly increasing, and
define

S(x)=ag No(x) +a; Ny(x) + a4 No(x)

+ agNe(x) + a9 No(x), ty< X <ty,, (3)

where a;>0, a,>0, a,<0, a¢<0, ag>0. Here b,=1,, ¢;,=b,=1,.
¢y =1y,. On (b,, c,) this reduces to our previous example and there is a
single simple zero. On (b,, ¢,), f(x)=ayNy(x) and does not vanish, while
at t, there is a double zero at which f changes sign.

By splitting up the function in the above manner and applying
Theorem 1 to each piece, it is easy to deduce (3) and (5). In the next
section we deduce a stronger version of (4).
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3. A GENERAL ZERO BounD

We first strengthen the zero count in [7, Chap. 4]. We suppose that [ is
given by (1) and is not identically zero and consider different types of
Zeros.

Isolated Zeros

1. Interior point. Take x in (¢y,1?,,..,.,) and suppose that x has
multiplicity s 2 0 in t. Suppose that for some /, r, 0</<n, 0<r<n,

fOT)=fx7 )= = ) =0£ (7)), )
S =)= =) =0#f " (xT), (10)

Since fis C"~* at x, we have /<rn—s if and only if r <n—s and in this
case we have /=r and define

alx)=I=r. (11)

We have seen that />n—s+ 1 1f and only if r 2 r —5 + | and in this case
we define

a(x)=I+r+s—n—-1
Now we define

alx)+1, if a(x) is even and f changes sign across x,
Z(x)=< alx)+ 1, if 2(x) is odd and f does not change sign across x,
a(x), otherwise.

In [7] the definition is the same but with «(x) replaced by max(/, r). It
can easily be seen that a(x)>=max(/, r) and so our zero count is stronger.

2. Left end-point. Let x =1, and suppose that (10) holds for some r,
0<r<n Let s=1 denote the multiplicity of x in t. Then r2n—s+1 and
we define

zZ(ixy=r+s—n—1

3. Right end-point. Let x=1t,,, , ., and suppose that (9) holds for some
1, 0</<n. Let s2 1 denote the multiplicity of x int. Then/>2n—s+1 and
we define

zZ(x)=Il+s—n—1.

(Cases 2 and 3 are not considered in [7].)
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In all cases, if z(x)>1 we say that x is an isolated zero of f of
multiplicity z(x).

Interval Zeros

1. Interior interval. Suppose that f vanishes on T =(x, y), while for
some /,r, 0</<n, 0<r<n, (9) holds and (10) holds with x replaced by
y. Let p=1, g= 1, denote respectively the multiplicities of x and y in t
Then we define

fT)=l+r+p+g—n—1+M,
where
M=\{i:t,eT}|. (12)
We now define

a(T)+1, if «(7") is even and f changes sign across 7,
z2(T)=< a(T)+1, if x(T) is odd and f does not change sign across 7,
o T), otherwise.

In [7], «(T) is replaced by n+ 1+ M. Since Izn—p+ 1, rzn—q+1,
we have a(T)=2n+ 14+ M.

2. Left end-interval. Suppose that f vanishes on 7= (¢, x) and (10)
holds for some r, 0 <r< n. Let ¢ =1 denote the multiplicity of x in t. Then

with M as in (12) we define
(T)=r+qg+ M.
{Since r=2n—q+1, we have z(T)=n+ 1 + M, which is the value in {7].)

3. Right end-interval. Suppose that f vanishes on T'=(x, ¢,,,,.,) and (9)
holds for some /, 0 </<n. Let p>1 denote the multiplicity of x in t. Then
with M as in (12) we define

AT)=1+p+M.

{As before, z(T) = n+ 1 + M, which is the value in [7].) In all cases we call
T an interval zero of f of multiplicity z(T').
Finally we define

ZH(f)=Y «n),

where the summation is taken over all isolated and interval zeros ¢ of f.
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Before stating Theorem 2, we give a simple example for which Z*+(f) >
Z(f) Letn=1,m=3, t,<t,<t,=1;<t,<Isand let f=N,— N;. Then f
has an isolated zero at x =1t, with /=r=1 and a(x}=2. Hence Z*(f)=3,
whereas Z(f)=1.

THEOREM 2. [If [ is given by (1) and is not identically zero, then
Z7(f)<SH(a). (13)

Proof. Choose points as in (7) so that for v=1, ..p, f,:=f|(b,, c,)
satisfies the condition of Theorem 1 and f vanishes outside {J {[b,, ¢,]:v=
1, .., p}. Suppose that for v=1, .., p,

fo= i a;N;,
i=js
where a,#0 for i=j, and k,. We show that
ey, b, D =J, o1 —k,— 1, v=1,.,p—1, (14)
z([to, b1 1) =11, (15)
2([epy tmrns 1) =m—k,. (16)

Writing co=1to, b,, 1 =1, ., 1, We have

2 =3 2+ Y lenbyin])

and applying Theorem 1 gives

P P
Z(f)<S Y, S*a;, wa )+ Y le, b 1)=5(a), (17)
v f v=0
by (14), (15), and (16}, which is the required result.

In fact the only case we prove is (14) for ¢,=b,,, as (14) for ¢, <bh, .,
and (15) and (16) follow similarly. Let ¢,=b,,,=x for some v, I <v<
p— 1. Suppose that x has multiplicity s>1 in t and x=1¢;, i=a, .., 0+
s~ 1 Then /in (9) is given by I=a—k,— 1, where n+ 1 —s</<n, and r
in (10) is given by r=j,, +n+1—o—s, where n+1—s<r<n So by
definition, a(x)=/+r+s—n—1=4, ,—k,— 1 and (14) is established. ]

Of course Theorem 2 implies Z*(f)<m. We remark that because we
replaced S~ by S* in (17), the inequality (13) may be weaker than could
be obtained directly from Theorem 1. For example, for the function (8),
Theorem 2 gives us only Z*(f)<8, while we saw in Section2 that
Theorem 1 implies that Z* (/) =4.
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